If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-20b+80=0
a = 1; b = -20; c = +80;
Δ = b2-4ac
Δ = -202-4·1·80
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-4\sqrt{5}}{2*1}=\frac{20-4\sqrt{5}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+4\sqrt{5}}{2*1}=\frac{20+4\sqrt{5}}{2} $
| 6p×12=£ | | (x−6)−5x=6(−6x+3)+4 | | (E+3)x5=35 | | 12=-3/7(u) | | -5y/3=-20 | | 1-+1x=1-1 | | (x+2)(3x+2)=x^2+4x+4 | | 1x+1x=1-1 | | 7(x+1)=-6 | | 246.4x-66.4=166.8x | | 246,4Δ-66,4=166,8x | | 246,4x-66,4=166,8 | | 246,4x-66,4=166,8x | | 3^x+7=21 | | -x-5,1=-4x+3,9 | | x-8-5=2 | | 3(x+4)-2(x-1)=6+3x+1 | | x+4/2-x+1/3=1+3x+1/6 | | 4(3x-1)+2x=1-7x | | x^-4-200x^2+9000=0 | | N^4-200n^2+9000=0 | | 4(x+2)=92 | | 8(2+x)-3(x-1)=x-1 | | 8(2+x)-3(x+1)=x-1 | | 4x+26=2x+44 | | 34+2x=0 | | 5x+7=7x-10 | | 2x+10/3=10 | | x^2=2704 | | 3(2c+3)=-15 | | t2-3t-2t+10=t2-5t+10 | | X2+x+x+1=x2+2x+1 |